Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
Arab J Chem ; 15(12): 104366, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2130066

ABSTRACT

We report microwave synthesis of seven unique pyrimidine anchored derivatives (1-7) incorporating multifunctional amino derivatives along with their in vitro anticancer activity and their activity against COVID-19 in silico. 1-7 were characterized by different analytical and spectroscopic techniques. Cytotoxic activity of 1-7 was tested against HCT116 and MCF7 cell lines, whereby 6 exhibited highest anticancer activity on HCT116 and MCF7 with EC50 values of 89.24 ± 1.36 µM and 89.37 ± 1.17 µM, respectively. Molecular docking was performed for derivatives (1-7) on main protease for SARS-CoV-2 (PDB ID: 6LU7). Results revealed that most of the derivatives had superior or equivalent affinity for the 3CLpro, as determined by docking and binding energy scores. 6 topped the rest with highest binding energy score of -8.12 kcal/mol with inhibition constant reported as 1.11 µM. ADME, drug-likeness, and pharmacokinetics properties of 1-7 were tested using Swiss ADME tool. Toxicity analysis was done with pkCSM online server. All derivatives showed high GI absorption. Except 1 and 3, all derivatives showed blood brain barrier permeability. Most derivatives showed negative logKp values suggesting derivatives are less skin permeable and bioavailability score of all derivatives was 0.55. The toxicity analysis demonstrated that all derivatives have no skin sensitization properties. 6 and 7 showed maximum tolerated dose (Human) values of -0.03 and -0.018, respectively and absence of AMES toxicity.

2.
Arabian journal of chemistry ; 2022.
Article in English | EuropePMC | ID: covidwho-2073629

ABSTRACT

We report microwave synthesis of seven unique pyrimidine anchored derivatives (1-7) incorporating multifunctional amino derivatives along with their in vitro anticancer activity and their activity against COVID-19 in silico. 1-7 were characterized by different analytical and spectroscopic techniques. Cytotoxic activity of 1-7 was tested against HCT116 and MCF7 cell lines, whereby 6 exhibited highest anticancer activity on HCT116 and MCF7 with EC50 values of 89.24±1.36 µM and 89.37±1.17 µM, respectively. Molecular docking was performed for derivatives (1-7) on main protease for SARS-CoV-2 (PDB ID: 6LU7). Results revealed that most of the derivatives had superior or equivalent affinity for the 3CLpro, as determined by docking and binding energy scores. 6 topped the rest with highest binding energy score of -8.12 kcal/mol with inhibition constant reported as 1.11 µM. ADME, drug-likeness, and pharmacokinetics properties of 1-7 were tested using Swiss ADME tool. Toxicity analysis was done with pkCSM online server. All derivatives showed high GI absorption. Except 1 and 3, all derivatives showed blood brain barrier permeability. Most derivatives showed negative logKp values suggesting derivatives are less skin permeable and bioavailability score of all derivatives was 0.55. The toxicity analysis demonstrated that all derivatives have no skin sensitization properties. 6 and 7 showed maximum tolerated dose (Human) values of -0.03 and -0.018, respectively and absence of AMES toxicity.

3.
Journal of Saudi Chemical Society ; : 101474, 2022.
Article in English | ScienceDirect | ID: covidwho-1778346

ABSTRACT

In the present study, Indole-based-oxadiazole (1A-17A) compounds were successfully synthesized. The structures of all synthesized compounds were fully characterized by different sophisticated spectroscopic techniques such 1H NMR, 13C NMR, EI-MS and HREI-MS. Further, the synthesized compounds were explored to investigate their broad-spectrum antibacterial and antibiofilm potential against multidrug resistant Pseudomonas aeruginosa (MDR-PA) and methicillin resistant Staphylococcus aureus (MRSA). The compounds possessed a broad spectrum of antibacterial activity having MIC values of values 1-8 mg/ml against the tested microorganisms. Compound A6 and A7 shows maximum antibacterial activity against MDR-PA, whereas A6, A7 and A11 shows highest activity against MRSA. Furthermore, antibiofilm assay shows that A6, A7 and A11 showed maximum inhibition of biofilm formation and it was found that at 4 mg/ml;A6, A7 and A11 inhibit MRSA biofilm formation by 81.1, 77.5 and 75.9%, respectively;whereas in case of P. aeruginosa;A6 and A7 showed maximum biofilm inhibition and inhibit biofilm formation by 81.5 and 73.7%, respectively. Molecular docking study showed that compounds A6, A7, A8, A10, and A11 had high binding affinity to bacterial peptidoglycan, indicating their potential inhibitory activity against tested bacteria, whereas A6 and A11 were found to be the most effective inhibitors of SARS CoV-2 main protease (3CLpro), with a binding affinity of −7.78 kcal/mol. Furthermore, SwissADME and pkCSM-pharmacokinetics online tools was applied to calculate the ADME/Tox profile of the synthesized compounds and the toxicity of these chemicals was found to be low. The Lipinski, Veber, Ghose, and Consensus LogP criteria were also used to predict drug-likeness levels of the compounds. Our findings imply that the synthesized compounds could be a useful for the preventing and treating biofilm-related microbial infection as well as SARS-CoV2 infections.

SELECTION OF CITATIONS
SEARCH DETAIL